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• 1 INTRODUCTION 

• Source separation


• discussing project


• delivering lecture


• microphones



• 1 INTRODUCTION 

• could students in SV 
hear us clearly?


• Beamforming?


• Adaptive arrays?



• 1 INTRODUCTION 

• Should have known something on mixing 
processing and observation


• Arrangements of microphones array


• Direction of speaker


• Time delay should be significant


• Take 18-792 Advanced Digital Signal 
Processing :-)
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So how does other algorithm work?

• Example with instantaneous mixture of two 
speakers


• Natural gradient update

• Works very well!

X



Story so far  
(and ahead)
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Capturing the structure in data

• The most important challenge in ML:  Find the 
best set of bases for a given data set
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Capturing data structure

• Much of what we’ve done has attempted 
to find the underlying structure of the data


– By analyzing the data itself


• We have assumed a linear structure

– The data lie primarily on a linear subspace or 

manifold

– Variations off the manifold are fine detail that 

may just be noise


• Linear models get 90% of the way

– But the math is extendable to non-linear 

manifolds, though we won’t go into it much, in 
this class
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The Linear Model

• Find the best set of bases v1,v2,…vD plane

– Given only a collection of data points x1, x2, … xN
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The linear model
• Given the bases , for any vector  : 


• Our actual problem: Given a collection of  vectors 
, find  and  such that





• So, algebraic problem, given , find  and  such that 
 as closely as possible

𝑩 = [𝑏1𝑏2…𝑏𝐷] 𝒙 𝒙 ≈ 𝑩𝒘

𝑁

𝒙1,  𝒙2, …, 𝒙𝑁 𝑩 𝒘1,  𝒘2, …, 𝒘𝑁

[𝒙1,  𝒙2, …, 𝒙𝐷] ≈ 𝑩[𝒙1,  𝒙2, …, 𝒙𝐷]

𝑿 ≈  𝑩𝑾

𝑿 𝑩 𝑾

𝑿 ≈  𝑩𝑾
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Views of the decomposition
•  ( )

•  are the bases of the subspace where 
most of the information about the 
data lies

–  are the coordinates of the instance in 
these bases

•  are the building blocks that compose 
the data

–  are the mixing weights with which the 
building blocks are combined to compose 
the instance

• Believe it or not, the two perspectives 
are interchangeable

𝒙 ≈ 𝑩𝒘 𝑿 ≈  𝑩𝑾

𝑩

𝒘

𝑩

𝒘
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But what is a good decomposition?

• Minimum error criterion:  The error between  and  is minimized

– KLT


• Statistical criteria:

– The rows of  (the components of ) are uncorrelated


• PCA


– The rows of  are statistically independent

• ICA


• Physics-motivated:

– The building blocks combine in a purely constructive way


• NMF


– The number of building blocks can be very large (much larger than the dimensionality of the data)

• Dictionary-based representations

𝑿 𝑩𝑾

𝑾 𝒘

𝑾
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• 1 INTRODUCTION 
Source sepatation as finding independent components

• Some notations


• Sources: 


• Observations: 


• Given , where  represents mixing process


• Find a inverse function  such that 

S = {s1, s2, ⋯, sN}
X = {x1, x2, ⋯, xN}

X = A (S) A

W ≈ A−1 S ≈ A−1 (X)



• 1 INTRODUCTION 
Source sepatation as finding independent components

•  is BLIND source separation


• BLIND: Know nothing about the mixing procedure 


• Quite difficult, need some assumptions on  and , to make life easier


• For example, assumption on  is uncorrelated, what will happen?

X = A (S)

A

S A

S



• 1 INTRODUCTION 
Recall the advantage of independence

• Uncorrelation of variables is generally 
considered desirable for modelling and analyses


• Sometimes it can reduce the number of 
model parameters


• Sometimes it is not practical to assume 
independence / uncorrelation


• We could transform correlated variables to make 
them uncorrelated in some cases



• 1 INTRODUCTION 
Assumption for Blind Source sepatation

• (independent) source separation tasks aims to demix the observation to 
independent components


•
(linear)   or  

x1 = a11s1 + a12s2⋯ + a1NsN
x2 = a21s1 + a22s2⋯ + a2NsN

⋮
xN = aN1s1 + aN2s2⋯ + aNNsN

X = AS



• 1 INTRODUCTION 
How to measure independence?

• What is tue virtue (specific excellence) of independent variable?



• 1 INTRODUCTION 
How to measure independence

• Source should have higher-order statistics properties instead of only 
 like PCA on tensorial decompositions


• FOBI-ICA algorithm, JASE-ICA algotithm


• Source should be less Gaussian compared with observation


• Fast-ICA algotithm

E [S1S2] = E [s1] E [s2]



• 1 INTRODUCTION 
Using higher-order statistics properties to measure independence

• Source should have higher-order statistics properties instead of only 
 like PCA on tensorial decompositions


• 


• 


• 


•

E [S1S2] = E [s1] E [s2]
E [s1s2s3s4] = E [s1] E [s2] E [s3] E [s4]
E [s2

1s2s3] = E [s2
1] E [s2] E [s3]

E [s2
1s2

2] = E [s2
1] E [s2

2]
E [s3

1s2] = E [s3
1] E [s2]



• 1 INTRODUCTION 
Using higher-order statistics properties to measure independence

• Source should have higher-order statistics properties instead of only 
 like PCA on tensorial decompositions


• We will use this high order moment to solve linear ICA 


• While, let’s see another measure of independence at first

E [S1S2] = E [s1] E [s2]



• 1 INTRODUCTION 
Difference between independent components and their mix

• UNIVERSALITY behind micro 
independent components


• example: KPZ function behind 
tetris


• example: Center Limit Theorem 
implies Gaussian distribution 
behiend any set of “not bad” 
independent random variable


Center Limit Theorem



• 1 INTRODUCTION 
Intuition: source should be “less Gaussian” than mixed signal



• 1 INTRODUCTION 
Intuition: source should be “less Gaussian” than mixed signal

•  is “less Gaussian” and  could be “more Gaussian”S X = AS



• 1 INTRODUCTION 
Intuition: source should be “less Gaussian” than mixed signal

• What if  itself is Gaussian?S



• 1 INTRODUCTION 

• in geometry, non-Gaussian source



• 1 INTRODUCTION 

• in geometry, Gaussian source



• 1 INTRODUCTION 
Case of Gaussian source shall be omitted

• 


• Let  be an mixing matrix with full rank


• 


• Each source  is Gaussian with mean 


• The vector  with  dimension is jointly 
Gaussian and covariance matrix 


• then what will  look like?

X = AS

A

S ∼ N(0,I)

si 0

S N
I

X



• 1 INTRODUCTION 
Case of Gaussian source shall be omitted

• It’s still Gaussian distribution


• What is the two essential components to 
describe a Gaussian distribution?



• 1 INTRODUCTION 
Case of Gaussian source shall be omitted

•  is a Gaussian distribution with 
mean  and covariance matrix 




• Let  be an orthogonal mixing matrix


•  is also Gaussian


•  has mean  and covariance matrix 



• What does that mean?

X = AS
0

E[XXt] = E[ASStAt] = AAt

B

X′￼ = ABS

X′￼ 0
E[X′￼X′￼t] = E[ABSStBtAt] = AAt



• 1 INTRODUCTION 
Case of Gaussian source shall be omitted

•  is a Gaussian distribution with 
mean  and covariance matrix 


•  is a Gaussian distribution 
with mean  and covariance matrix 


•  and  are both solution

X = AS
0 AAt

X′￼ = A (BS)
0 AAt

S BS



• 1 INTRODUCTION 
Summary: ssumption for (basic) ICA algorithm

• Time delay is not significant in all 
microphone / observation


• The mixing function is linear


• The sources are not (joint) Gaussian 
distribution


• The sources EITHER is less Gaussian, 
OR has properties of higher-order 
statistics properties on tensorial 
decompositions



• Poll 1

• Choose all the true statements


• ICA can handle all kind of independent sources including Gaussian source and square 
wave source


• The independence condition is only an assumption and may not be true for some tasks


• Due to universality, the observation (mixed source) should be more Gaussian for all 
cases (all the sources and all the mixing procesure)


• Thanks to universality, the observations are often more Gaussian especially when the 
number of (independent) source is large 


• Signal processing techniques including beamforming and adaptive filtering is preferred 
on source separation for the cases time delay is significant



• 2 FIRST ICA IMPLEMENTATION: FBOI
Fourth order blind identification (FOBI)

• First talk about this for homework2


• Main idea: higher order decompositing properties



• 2 FIRST ICA IMPLEMENTATION: FBOI
PCA: second order moment decomposition, not good enough !!!

• Then, trying to find something better. Rrefer to the additional notes on piazza 
https://piazza.com/class/ksset4cralds5?cid=150 or what I (will) write on the 
blackboard

https://piazza.com/class/ksset4cralds5?cid=150


• 2 FIRST ICA IMPLEMENTATION: FBOI
Fourth order blind identification (FOBI)

• PCA: given , optimize  such that 


• FOBI: given , optimize  such that 



• It is recommended to read the additional notes on piazza https://piazza.com/
class/ksset4cralds5?cid=150 instead of teh following pages to get to know 
the intuition of FOBI, although I omit the proof on piazza

X W E [SSt] = E [WXXtWt] = I

X W
E [StSSSt] = E [XtWtWXWXXtWt] = I



• 2 FIRST ICA IMPLEMENTATION: FBOI
Fourth order blind identification (FOBI)

• Main idea: higher order decompositing properties


• FOBI:


• 


• 


• 


•

E [s1s2s3s4] = E [s1] E [s2] E [s3] E [s4]
E [s2

1s2s3] = E [s2
1] E [s2] E [s3]

E [s2
1s2

2] = E [s2
1] E [s2

2]
E [s3

1s2] = E [s3
1] E [s2]



• 2 FIRST ICA IMPLEMENTATION: FBOI
Fourth order blind identification (FOBI)

• How to evaluate the “independence” with forth order?


• For any random vector  with zero mean, defined the 
fourth order indicator


•  


•  is diagonal if and only if  are pairwise independent

a = (a1, a2, ⋯, aN)T

Da = E [ a 2 aat]
Da ai



• 2 FIRST ICA IMPLEMENTATION: FBOI
Fourth order blind identification (FOBI)

•  


•  is diagonal if and only if  are pairwise independent


• For sources , the indicator matrix  should be diagonal 

Da = E [ a 2 aat]
Da ai

S DS



• 2 FIRST ICA IMPLEMENTATION: FBOI
Fourth order blind identification (FOBI)

• , where  has zero mean


• 


• 


• Quite complex


• If only  or 

S = WX X := X − μX

DS = E [StSSSt]
DS = E [(XtWt) (WX) (WX) (XtWt)]

WtW = I XXt = I



• 2 FIRST ICA IMPLEMENTATION: FBOI
Fourth order blind identification (FOBI)

• We claim , then 


• Because the covariance matrix of  is identity matrix, so  is a unitary 
matrix if and only if is also identity matrix


• Could we make it identity matrix :-)


• Whiten data !!!

S = WX WWt = I ⟺ E [XXt] = I

S W
E [XXt]



• 2 FIRST ICA IMPLEMENTATION: FBOI
Fourth order blind identification (FOBI)

• Whiten data


• Orthogonal diagonalization: 


• 


• Then, 


•  where  is a unitary matrix

E [XXt] = PΛPt

X̂ = Λ− 1
2 Pt ⋅ X

E [X̂X̂t] = E [Λ− 1
2 PtXXtPΛ− 1

2 ] = I

S = WX̂ W



• 2 FIRST ICA IMPLEMENTATION: FBOI
Fourth order blind identification (FOBI)

• , what will happens?


• 


• 


•

WtW = I

DS = E [StSSSt] = E [(X̂tWt) (WX̂) (WX̂) (X̂tWt)]
DS = E [X̂tX̂WX̂X̂tWt] = W ⋅ E [X̂tX̂X̂X̂t] ⋅ Wt = W ⋅ DX̂ ⋅ Wt

WtDSW = DX̂



• 2 FIRST ICA IMPLEMENTATION: FBOI
Fourth order blind identification (FOBI)

• , what will happens?


• 


• What’s your observation for the equation? 

WtW = I

WtDSW = DX̂



• 2 FIRST ICA IMPLEMENTATION: FBOI
Fourth order blind identification (FOBI)

• What’s your observation for the equation?


• Recall that  is symmetric and can be diagnosis with unitary matrix 


• Apply eigen decomposition to 

DX̂ W

DX̂



• 2 FIRST ICA IMPLEMENTATION: FBOI
Fourth order blind identification (FOBI)

•  Procedure of FOBI


• (0) let the observation be zero mean 


• (1) whiten data , where 


• (2) Compute weighted fourth order correlation 


• (3) Eigen decomposition:  and let 


• (4) Obtain sources: 

X := X − μX

X̂ = Λ− 1
2 Pt ⋅ X E [XXt] = PΛPt

DX̂ = E [X̂tX̂X̂X̂t]
DX̂ = UΛX̂Ut W = Ut

S = WX̂



• 2 FIRST ICA IMPLEMENTATION: FBOI
• One last thing for the FOBI Procedure

• What is  ?


• Samples is not random variables !!!

E [(XtX) XXt]



• 2 FIRST ICA IMPLEMENTATION: FBOI
Some Remarks on FOBI

• FOBI is one of the first and most simple ICA methods


• Whiten data can reduce the freedom dimension of  and fasten the 
convergence


• FastICA based on Gaussian measure generally performances better in case of 
high-dimensional data


• The most notable drawback of FOBI require all the sources have quite distant 
in their fourth order moment values, implicating the failure in case of having 
several mechanisms characterized with the same distribution

W



• No poll for FOBI

• Best wishes to your homework2 :-)


• Pay attention that you could get different result with FOBI and Fast-ICA (in 
ski-learn)



• 3 MEASURE OF GAUSSIAN 

• Besides, using fourth order moment


• Independent sources have less Gaussian compated to the observation


• What is “less Gaussian”?



• 3 MEASURE OF GAUSSIAN 
divergence = contrast function

• Contrast function, also known as divergence, is a function which establishes 
the “distance” of one probability distribution to the other on a statistical 
manifold. ——wikipedia


• For exxample: KL-divergence



• 3 MEASURE OF GAUSSIAN 
3.1 Kurtosis divergence

• Gaussian has little tail probability


• Kurtosis is a scale of forth central 
moment —— a measure of how 
heavy the tails of a distribution are



• 3 MEASURE OF GAUSSIAN 
3.1 Kurtosis divergence

• Third central moment (skewness) 
may not be good enough ?


• Third central moment (skewness) 
may not be good enough ? 


• Every symmetric distribution has 
zero skewness.



• 3 MEASURE OF GAUSSIAN 
3.1 Kurtosis divergence

• Definition:  is a random variable with mean  and variance , then




• Scale of fourth central moment

X μ σ2

Kurt [X] = E [( X − μ
σ )

4

] =
E [(x − μ)4]
E [(x − μ)2]

2 =
μ4

σ4



• 3 MEASURE OF GAUSSIAN 
3.1 Kurtosis divergence

• For random variable , 


• Optimize the Kurtosis to  with gradient descent / increase?

X ∼ N (μ, σ2) Kurt[X] =
3σ4

(σ2)2 = 3

3



• 3 MEASURE OF GAUSSIAN 
3.1 Kurtosis divergence

• refined version 


• Or when  has mean  and variance , 


•

Kurt[X] = E [( X − μ
σ )

4

] − 3 =
μ4

σ4
− 3

X 0 1

Kurt[X]] = E [X4] − 3 (E [X2])
2



• 3 MEASURE OF GAUSSIAN 
3.1 Kurtosis divergence

• Advantage: easy to compute & optimize


• For a Gaussian R.V., its (refined) kurtosis is 0


• Use the absolute value of kurtosis


• Therefore, we want to maximize the kurtosis of the distribution



• 3 MEASURE OF GAUSSIAN 
3.1 Kurtosis divergence

• You can only evaluate with data (sample of R.V.) instead of the R.v. itself


• Generate with 1000000 examples



• 3 MEASURE OF GAUSSIAN 
3.1 Kurtosis divergence

• What if less samples?


• Generate with 100 examples



• 3 MEASURE OF GAUSSIAN 
3.1 Kurtosis divergence

• Benefits 


• computationally easy 


• widely used! 


• Disadvantages 


• Susceptible to outliers 


• Few data points leads to bad estimate 


• Not a robust measure of Gaussianity!



• 3 MEASURE OF GAUSSIAN 
3.2 neg-entropy

• Entropy: 


• Entropy is a measure of surprise 


• R.V. that is “more random” will have a larger entropy as more bits needed to 
send and vice versa


• What is the entropy of a Gaussian random variable?

H(X) = − Σipi log (pi)



• 3 MEASURE OF GAUSSIAN 
3.2 neg-entropy

• Entropy of a Gaussian: depends, but it’s the largest possible value of any 
distribution with equal variance


• Given R.V.  which has variance , let  be a Gaussian 
with the same covariance matrix as 


• Denote  as the negentropy of 

X σ2 XGauss ∼ N (0,σ2)
X

J (X) := H (XGauss) − H (X) X



• 3 MEASURE OF GAUSSIAN 
3.2 neg-entropy

• 


•  and the equation holds iff  is Gaussian


• Maximize negentropy to get source


• Sounds good …

J (X) := H (XGauss) − H (X)

J(X) ≥ 0 X



• 3 MEASURE OF GAUSSIAN 
3.2 neg-entropy

• Generated with 
1,000,000 examples


• Use GOOD 
approximation of 

 
instead of itself !!!
J (X) := H (XGauss) − H (X)



• 3 MEASURE OF GAUSSIAN 
3,2 neg-entropy

• Approximation of negentropy


• , 


• where ,  is a non-linear and non-quadratic functions


• Some commonly used  

J (X) ∝ [E [G (X)] − E [G (v)]]
2

v ∼ N (0,I) G

G



• 3 MEASURE OF GAUSSIAN 
3.2 neg-entropy

• Advantages: 


• Very well justified measure of Gaussianity


• Disadvantages 


• Computationally hard


• Must estimate the PDF of a R.V. for accuracy results but we will usually 
approximate negentropy and maximize over that



• Poll 2

• Which divergence below is easier to implement


• Kurtosis divergence


• Neg-entropy


• Which divergence below is more accurate with less deviation


• Kurtosis divergence


• Neg-entropy



• 4 SECOND ICA IMPLEMENTATION 
4,1 Fast ICA

• Given observation , optimize  (  ) such that it maximize 


• 


• , condition on 


• How to solve?


• Leave the solution slides after class

X W S = WX j(S)

J (S) = J (WX) ∝ [E [G (WX)] − E [G (v)]]
2

W = argmax {E [G (WtX)] − E [G (v)]} W
2 = 1



• 4 SECOND ICA IMPLEMENTATION 
4,1 Fast ICA

• 


• After applying the Lagrange multiplier,  can be rewritten in terms of the 
first derivatives of  and the optimal value of , that is,  and 


• 


• The iteration can be reduced to the Newton method used in order to find a 
vector  leading to the maximal negentropy.

F (W) := {E [G (WtX)] − E [G (v)]}
F (W)

G W G′￼ W0

F* (W) = E [XG′￼(WtX)] − E [Wt
0XG′￼(Wt

0X)] W

W



• 4 SECOND ICA IMPLEMENTATION 
4,1 Fast ICA

• Given that we are actually dealing with the nonlinear system of equation, this has to be 
done using Jacobian matrix


• 


• Then, the iteration step of Fast-ICA is the following:


• 


• normalize  befrore next iteration.


• The convergence of the algorithm is verified by calculating a dot product of  and , 
which ought to be zero

Jaco (W) = E [G′￼′￼(WtX)] I − E [Wt
0XG′￼(Wt

0X)] I

Wn+1 = Wn − Jaco−1 (Wn) F* (Wn)
Wn+1

Wn+1 Wn



• 4 SECOND ICA IMPLEMENTATION 
4,1 Fast ICA

• A useful toolkit: ski-learn


•



• 4 SECOND ICA IMPLEMENTATION 
4.2 Other Methods

• Joint Approximation Diagonalization of Eigen- matrices (JADE), you can find a 
short introduction in hidden slide 


• Robust FOBI, by Cardoso. Free up third moment


• fastICA that free upon some function


• In 1995, Tony Bell and Terry Sejnowski proposed a simple infomax neural 
network algorithm for independent component analysis (ICA)



Another typical ICA approach in TENSORIAL DECOMPOSITIONS



• 4 SECOND ICA IMPLEMENTATION 
4.2 Other Methods

• None of them really gurrantee to give you independence.


• You can come out some other functions and put up a new method on your 
own, such as Try to free upon other moment beyond second moment :-)



Poll 3

• Choose all the true statement as follows


• FOBI focus on the uncorrelation in third moment of random variables 
(independent sources) to evaluate the independent component in signal


• You can put forward your own methods to solve ICA by using another order 
of moment people never used before


• Fast ICA use second orders moment to evaluate the independent 
component behind a signal


• Fast ICA use a specific function instead of any orders moment to evaluate 
the independent component behind a signal



5 APPLICATION

• image recognition (see more 
details in homework3)


• example:  ICA bases of a set of
 pixels natural images 

(not only faces).
16 × 16
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Another example!
Input Mix Output

26



5 APPLICATION

• Very commonly used to 
enhance EEG signals 


• EEG signals are frequently 
corrupted by heartbeats and 
biorhythm signals and ICA can 
be used to separate them out





5 APPLICATION

• extracting structure 
from stock returns 
and predicting stock 
market prices 


• Finding hidden 
factors in financial 
datas



• we applied ICA on a different problem the cashflow of several stores belonging to the 
same retail chain trying to nd the fundamental factors common to all stores that affect 
the cashflow data.


• The assumption of having some underlying independent components in this specic 
application may not be unrealistic.  For example factors like seasonal variations due to 
holidays and annual variations and factors having a sudden effect on the purchasing 
power of the customers like prize changes of various commodities can be expected to 
have an eect on all the retail stores and such factors can be assumed to be roughly 
independent of each other. Yet depending on the policy and skills of the individual 
manager like eg advertising efforts the effect of the factors on the cash ow of specic 
retail outlets are slightly dffierent. By ICA it is possible to isolate both the underlying 
factors and the eect weights thus also making it possible to group the stores on the 
basis of their managerial policies using only the cash ow time series data.



5 APPLICATION
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The Notes

• Three instruments..

31



5 APPLICATION

• analysis of changes in gene expression over time in single cell RNA-
sequencing experiments


• Identify and Separate Bright Galaxy Clusters from the Low-frequency Radio 
Sky


• ……



Poll 4

• Choose all the tasks you can apply ICA on


• Speech enhancement that separate speech from a mixed sound


• removing artifacts, such as eye blinks, from EEG data and studies of the resting state 
network of the brain.


• computer vision tasks like optical Imaging of neurons or face recognition


• extracting structure from stock returns and predicting stock market prices


• mobile phone communications


• analysis of changes in gene expression over time in single cell RNA-sequencing experiments


• Identify and Separate Bright Galaxy Clusters from the Low-frequency Radio Sky



6 COMPARED WITH PCA
6.1 geometric intuition

• Observation  


• Samples of random variable 

X (t)

X



6 COMPARED WITH PCA
6.1 geometric intuition

• Where are the 2 directions 
with maximum non-
Gaussianity?



6 COMPARED WITH PCA
6.1 geometric intuition

• Here are the 2 directions 
with maximum non-
Gaussianity?



6 COMPARED WITH PCA
6.1 geometric intuition



6 COMPARED WITH PCA
6.1 geometric intuition

• What will  looks like?X



6 COMPARED WITH PCA
6.1 geometric intuition

• X = AS



6 COMPARED WITH PCA
6.1 geometric intuition

• S = WX



6 COMPARED WITH PCA
6.1 geometric intuition

• S = WX



6 COMPARED WITH PCA
6.1 geometric intuition

• Where is the ICA bases?


• Where is the PCA bases?



6 COMPARED WITH PCA
6.1 geometric intuition

• here is the ICA bases and PCA bases



6 COMPARED WITH PCA
6.1 geometric intuition

• here is the ICA bases and PCA bases
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6 COMPARED WITH PCA

• There are 12 notes in the segment, hence we try to estimate 12 notes..
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6 COMPARED WITH PCA
PCA solution

• There are 12 notes in the segment, hence we try to estimate 12 notes..
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6 COMPARED WITH PCA
So how does this work: ICA solution



6 COMPARED WITH PCA
Discussion

• What’s your feeling when you hear those bases?


• Why doesn’t ICA work as well as we’d expect?



6 COMPARED WITH PCA
6.2 Unique Basis



6 COMPARED WITH PCA
6.2 Unique Basis

• permuted order: ICA basis has no sense of order


• Get K independent directions, but does not have a notion of the “best” 
direction


• Scale and sign: does not have sense of scaling



6 COMPARED WITH PCA
6.2 Unique Basis

• How to compute weight and reconstruction error?



6 COMPARED WITH PCA
6.2 Unique Basis

• Do not use the projection to each ICA bases, because they could be 
correlated !!!


• use pseudo inverse to evaluate the projection to the whole surface the bases 
generated


• you can compute the weight with linear algebra :-)



Poll 5

• Which figure in the upper 
image is more likely to be 
recovered by ICA?


• the third one


• the last one



• 7 DISADVANTAGE WITH REFINEMENT 
7.0 What if the number of  is significantly larger than ?S X



• 7 DISADVANTAGE WITH REFINEMENT 
7.1 Introduction of Linear Noisy ICA

• Let  be the observation with white Gaussian noise 


•  is uncorrelated with the true observation 


• methods


• FFT, low-pass filter, iFFT (inefficient)


• wavelet shrinkage (not explicitly take advantage of data statistics)


• median filter (not explicitly take advantage of data statistics)


• Sparse Code Shrinkage (ICA related methods)

Z = X + n n

n X = AS
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7.1 Introduction of Linear Noisy ICA

• 


• , where  is the best orthognal approximation of the inverse of 
the ICA mixing matrix


• noise term  is still Gaussian and white and the density of  
becomes highly non-Gaussian with a high positive kurtosis (with some good 
assumption on )

Z = X + n

WZ = S + Wn W

Wn S = Wx

S
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7.1 Introduction of Linear Noisy ICA

• Assuming  has a specific non-Gaussian distribution (for example, Laplician 
distribution), we can evaluate shirkage function  explicitly


• The optimal (maximum likelihood) of  can be evaluate 
by a refined algorithm of Fast-ICA

S
S = g (Wz)

X̂ = WtS = Wtg (WZ)
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7.2 Introduction of Nonlinear ICA

• , where  is a non-linear function and  is the parameter of the function


• in general, non-linear ICA do not have unique solution


• Suppose  and  are independent sources, and  is the observation


• Define  for all  and 


• Random variable  is independent of 


• It is absurd to regard  and  to be the independent component of  with 
another non-linear function 

X = f (S |θ) f θ

s1 s2 X = (x1, x2)
g (a, b) := P (s2 ≤ b |s1 = a) a b

y = g(s1, s2) s1

s1 y X
f
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7.2 Introduction of Nonlinear ICA

• The construction is dened recursively as follows. Assume that we have already m 
independent random variables y1; : : : ; ym which follow a joint uniform distribution 
in [0; 1]m . (It is not a restriction to assume that the distributions of the yi are 
uniform: this follows directly from the recursion, as will be seen below.) Denote by x 
any random variable, and by a1; : : : ; am; b some non-random scalars. Dene


• 


• where py() and py;x() are the (marginal) probability densities of (y1; : : : ; ym) and 
(y1; : : : ; ym; x), respectively (it is assumed here implicitly that such densities exist), 
and P (j) denotes the conditional probability.
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• 7 DISADVANTAGE WITH REFINEMENT 
7.2 Introduction of Nonlinear ICA

• You need some extra assumption for  and  to make the solution unique


• Use temporal structures in the time series (non-stationary and 
autocorrelation for stationary)


• Use an auxiliary variable such as multimodal for audio and video


• You can combined it with some useful estimation methods like self-
supervised learning or Variational autoencoder (VAE)

X S
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7.2 Introduction of Nonlinear ICA

• Permutation-constructive learning (OCL)


• Take short time windows for autocorrelation 
for the stationary data 


• Permute  and evaluate 



• Use MLP with hidden layer  with 
dimension  to predict 


• MLP turn nonlinear ICA to linear ICA

y(t) = ⟨x(t), x(t − 1)⟩

x(t)
y*(t) = ⟨x(t), x(t*)⟩

h(x)
n
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7.2 Introduction of Nonlinear ICA

• Time-contrastive learning (TCL)


• Non-stationary time series  are mixed to 
the observation data follows nonlinear ICA 
method  where  is smooth 
and invertible map from  to 


• Chop them to different segmentation


• Use MLP with hidden layer  with 
dimension  to predict 


• MLP turn nonlinear ICA to linear ICA

s(t)

x(t) = f(s(t)) f( ⋅ )
ℝn ℝn

h(x)
n

ℝn
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7.2 Introduction of Nonlinear ICA

• classical reference without deep learning: Nonlinear Independent Component 
Analysis: Existence and Uniqueness Results http://citeseerx.ist.psu.edu/
viewdoc/download;jsessionid=EB9962CA3821E70E34A14B61A23082DF?
doi=10.1.1.54.6547&rep=rep1&type=pdf


• non-linear ICA in 21 century


• https://www.youtube.com/watch?v=_cBLSNRWt8c&t=761s


• Variational Autoencoders and Nonlinear ICA: A Unifying Framework https://
arxiv.org/abs/1907.04809

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=EB9962CA3821E70E34A14B61A23082DF?doi=10.1.1.54.6547&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=EB9962CA3821E70E34A14B61A23082DF?doi=10.1.1.54.6547&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=EB9962CA3821E70E34A14B61A23082DF?doi=10.1.1.54.6547&rep=rep1&type=pdf
https://www.youtube.com/watch?v=_cBLSNRWt8c&t=761s
https://arxiv.org/abs/1907.04809
https://arxiv.org/abs/1907.04809
https://arxiv.org/abs/1907.04809
https://arxiv.org/abs/1907.04809
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7.3 introduction to Quantum ICA



8 REFERENCE 

• Independent Component Analysis A Tutorial https://www.cs.jhu.edu/~ayuille/
courses/Stat161-261-Spring14/HyvO00-icatut.pdf


• COMPARATIVE ANALYSIS OF THE ICA ALGORITHMS APPLIED ON A 2D 
SIGNAL http://oaji.net/articles/2017/4249-1487183273.pdf


• ICA ppt from prof. Bhiksha Raj


• ICA ppt from Patrick, TA in previous year

https://www.cs.jhu.edu/~ayuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf
https://www.cs.jhu.edu/~ayuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf
https://www.cs.jhu.edu/~ayuille/courses/Stat161-261-Spring14/HyvO00-icatut.pdf
http://oaji.net/articles/2017/4249-1487183273.pdf

